Math 3450 - Homework # 4 Functions

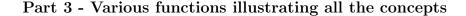
Part 1 - One-to-one / Onto / Inverse

- 1. Consider the following functions. For each function f, (i) either prove that f is one-to-one or give an example to show otherwise, and (ii) either prove that f is onto, or give an example to show otherwise. (iii) If f is a bijection, find a formula for f^{-1} .
 - (a) $f : \mathbb{Q} \to \mathbb{Q}$ where $f(x) = x^3$.
 - (b) $f : \mathbb{R} \to \mathbb{R}$ where f(x) = 2x + 5.
 - (c) $f : \mathbb{R} \to \mathbb{R}$ where $f(x) = x^4 16$.
 - (d) $f : \mathbb{Z}_4 \to \mathbb{Z}_4$ given by $f(\overline{x}) = \overline{2} \cdot \overline{x} + \overline{1}$.
 - (e) $f: \mathbb{Z}_4 \to \mathbb{Z}_4$ given by $f(\overline{x}) = \overline{3} \cdot \overline{x} + \overline{1}$.
 - (f) $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ where f(a, b) = a + b.
 - (g) $g: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ where g(m, n) = (2m + 1, n).
 - (h) $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ where f(a, b) = (a + b, a b).
 - (i) $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ where f(m, n) = (5m + 4n, 4m + 3n).
- 2. Suppose that $f: A \to B$ and $g: B \to C$. Prove: If $g \circ f$ is onto, then g is onto.
- 3. Suppose that $f : A \to B$ and $g : B \to C$. Prove: If f is not one-to-one, then $g \circ f$ is not one-to-one.

Part 2 - Functions applied to sets

- 4. Suppose that A, B, W, Z be sets where $W \subseteq A$ and $Z \subseteq A$. Let $f: A \to B$.
 - (a) Prove that $f(W \cup Z) = f(W) \cup f(Z)$.

- (b) Prove that $f(W \cap Z) \subseteq f(W) \cap f(Z)$.
- (c) Give an example to show that $f(W \cap Z) = f(W) \cap f(Z)$ is not always true.
- (d) Prove that if $W \subseteq Z$, then $f(W) \subseteq f(Z)$.
- 5. Suppose that A, B, W, Z be sets where $W \subseteq B$ and $Z \subseteq B$. Let $f: A \to B$.
 - (a) Prove that $f^{-1}(W \cap Z) = f^{-1}(W) \cap f^{-1}(Z)$.
 - (b) Prove that $f^{-1}(W \cup Z) = f^{-1}(W) \cup f^{-1}(Z)$.
 - (c) Prove that $A f^{-1}(W) = f^{-1}(B W)$.
 - (d) Prove that if $W \subseteq Z$, then $f^{-1}(W) \subseteq f^{-1}(Z)$.



- 6. Consider the function $f : \mathbb{Z}_n \to \mathbb{Z}_n$ given by $f(\overline{x}) = \overline{x}^2$.
 - (a) Draw a picture of f when n = 5.
 - (b) Draw a picture of f when n = 6.
 - (c) Prove that f a well-defined function.
 - (d) Prove that if n > 2 then f is not one-to-one.
- 7. Let *n* be an integer with $n \ge 2$. Let *a* be an integer. Define $g_a : \mathbb{Z}_n \to \mathbb{Z}_n$ by the formula $g_a(\overline{x}) = \overline{x} + \overline{a}$.
 - (a) Draw a picture of g_3 and g_2 when n = 4.
 - (b) Compute and draw a picture of $g_3 \circ g_2$ and $g_2 \circ g_3$ when n = 4.
 - (c) Prove that g_a is well-defined.
 - (d) Prove that g_a is a bijection for any n.
 - (e) Find a formula for g_a^{-1} .
- 8. Let $n \geq 2$ be an integer. Consider the reduction mod $n \mod n \mod \pi_n : \mathbb{Z} \to \mathbb{Z}_n$ given by the formula $\pi_n(x) = \overline{x}$.

For example, $\pi_6(2) = \overline{2}$ and $\pi_6(18) = \overline{18} = \overline{0}$ since $18 \equiv 0 \pmod{6}$.

- (a) Calculate $\pi_6(-1)$, $\pi_6(10)$, $\pi_6(7)$, and $\pi_6(-17)$. Draw a picture of the π_6 map. Is π_6 one-to-one? Is π_6 onto?
- (b) Let $X = \{1, 17, -5, 102, -13\}$. Calculate $\pi_6(X)$.
- (c) Let $Y = \{\overline{0}\}$. Prove that $\pi_6^{-1}(Y) = \{6k \mid k \in \mathbb{Z}\}.$
- (d) Let $Y = \{\overline{1}\}$. Prove that $\pi_6^{-1}(Y) = \{6k + 1 \mid k \in \mathbb{Z}\}.$
- (e) What is $\pi_6^{-1}(\{\overline{0},\overline{3}\})$ equal to? Prove your answer.
- 9. Let a and n be integers with $n \ge 2$. Define $f_a : \mathbb{Z}_n \to \mathbb{Z}_n$ by $f_a(\overline{x}) = \overline{a} \cdot \overline{x}$.
 - (a) Draw a picture of f_4 when n = 6.
 - (b) Draw a picture of f_2 when n = 3.
 - (c) Prove that f_a is a well-defined function.
 - (d) Prove that $f_c \circ f_d = f_{cd}$.
 - (e) Prove that $f_{cd} = f_{dc}$ for all integers c and d.
 - (f) Prove: If $y \equiv w \pmod{n}$, then $f_y = f_w$.
 - (g) Prove that if gcd(a, n) > 1, then f_a is not a bijection. [Hint: Note that $f_a(\overline{0}) = \overline{0}$. Find $\overline{k} \neq \overline{0}$ with $f_a(\overline{k}) = \overline{0}$.]
 - (h) Consider $f_3 : \mathbb{Z}_5 \to \mathbb{Z}_5$. Find f_3^{-1} and express it in the form f_b for some integer b.
 - (i) Prove: If there exists $\overline{b} \in \mathbb{Z}_n$ with $\overline{b} \cdot \overline{a} = 1$, then f_a is a bijection. [Note: In Math 4460 you will show that there exists such a \overline{b} if and only if gcd(a, n) = 1.]
- 10. Let A be a set. Define the function $f : \mathcal{P}(A) \to \mathcal{P}(A)$ where f(X) = A X for any $X \subseteq A$.
 - (a) Draw a picture of f when $A = \{1, 2, 3\}$.
 - (b) If $X \subseteq A$, then A (A X) = X.
 - (c) For general A prove that f is a bijection.
 - (d) For general A prove that $f = f^{-1}$.
- 11. Let $A = \mathbb{N} \cup \{0\} = \{0, 1, 2, 3, 4, 5, 6, 7, \ldots\}$. Let $f : A \times A \to A$ where $f(m, n) = m^2 + n^2$.
 - (a) Calculate f(3, 5), f(1, 1), and f(2, 1).

- (b) Let $C = \{(0,0), (1,10), (2,5)\}$. Calculate f(C).
- (c) Let $B = \{1, 2, 3, 4\}$. Find $f^{-1}(B)$.
- (d) Show that f is not one-to-one.
- (e) Show that f is not onto.